Modal $\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\tilde{\mathrm{l}}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{C}$ Logics and Predicate Superintuitionistic Logics: $\mathrm{C}_{0\Gamma \mathrm{r}\mathrm{e}..\mathrm{S}},\mathrm{p}$
نویسنده
چکیده
In this note we deal with intuitionistic modal logics over $\mathcal{M}\mathcal{I}PC$ and predicate superintuitionistic logics. We study the correspondence between the lattice of all (normal) extensions of MTPC and the lattice of all predicate superintuitionistic logics. Let $\mathrm{L}_{Prop}$ denote a propositional language which contains two modal operators $\square$ and $\mathrm{O}$ , and $\mathrm{L}_{Pred}-\mathrm{a}$ first-order language. Formulas of $\mathrm{L}_{Prop}$ and $\mathrm{L}_{Pred}$ are built in a usual way. Let us denote the sets of all formulas of $\mathrm{L}_{Prop}$ and $\mathrm{L}_{Pred}$ by $\mathrm{F}\mathrm{o}\mathrm{R}\mathrm{M}(\mathrm{L}_{Prop})$ and $\mathrm{F}\mathrm{o}\mathrm{R}\mathrm{M}(\mathrm{L}_{p_{r\mathrm{e}d}})$ respectively. $\mathcal{M}\mathcal{I}PC$ (which was first introduced by A. Prior and R. Bull) is the least subset of $\mathrm{F}\mathrm{o}\mathrm{R}\mathrm{M}(\mathrm{L}_{P\mathrm{p}})r\circ$ which contains the propositional intuitionistic logic $\mathcal{I}N$, the formulas (1) $\square parrow p$ $parrow \mathrm{O}p$ (2) $\square (parrow q)arrow(\square parrow\square q)$ $\mathrm{O}(p\vee q)arrow(\mathrm{O}p\mathrm{O}q)$ (3) $\mathrm{O}parrow\square \mathrm{O}p$ $\mathrm{O}\square parrow\square p$ (4) $\square (parrow q)arrow(\mathrm{O}parrow \mathrm{O}q)$ and is closed under substitution, modus ponens and necessitation. A subset of $\mathrm{F}\mathrm{o}\mathrm{R}\mathrm{M}(\mathrm{L})Pr\circ \mathrm{p}$ which contains $\mathcal{A}\Lambda \mathcal{I}Pc$ and is closed with respect to those rules of inference is called an intuitionistic modal logic over $\mathcal{M}\mathcal{I}PC$ . Let us denote the lattice of all intuitionistic modal logics over $\mathcal{M}\mathcal{I}PC$ by $\Lambda(\mathcal{M}\mathcal{I}PC)$ . For any $\mathcal{L}\in\Lambda(\mathcal{M}\mathcal{I}PC)$ and $\Gamma\subseteq \mathrm{F}\mathrm{o}\mathrm{R}\mathrm{M}(\mathrm{L})Pr\circ p$ let $\mathcal{L}\oplus\Gamma$ denote the least logic in $\Lambda(\mathcal{M}\mathcal{I}PC)$ which contains both $\mathcal{L}$ and $\Gamma$ . We will denote by $Q-\mathcal{I}N$ the standard predicate intuitionistic logic. A subset of FoRM $(\mathrm{L})Pred$ which contains $Q-\mathcal{I}N$ and is closed with respect to the first-order rules of inference will be called a predicate superintuitionistic logic. Let us denote the lattice of all predicate superintuitionistic logics by $\Lambda(Q-\mathcal{I}N)$ . For any $S\in\Lambda(Q-\mathcal{I}N)$ and 数理解析研究所講究録 1010巻 1997年 1-6 1
منابع مشابه
Fuzzy Graph Rewritings
This paper presents fuzzy graph rewriting systems with fuzzy relational calculus. In this paper fuzzy graph means crisp set of vetices and fuzzy set of edges. We provide $\mathrm{f}\mathrm{u}\mathrm{z},7,\mathrm{y}$ relational calculus witll Heyting algebra. Formalizing rewriting system of fuzzy graphs it is important to $\mathrm{c}\cdot 1_{1\mathrm{t})\mathrm{t}}.\mathrm{q}\mathrm{C}1$ how to ...
متن کاملMaintaining a Dynamic Set of Processors in a Distributed System
$C_{\mathit{0}\gamma\}}\epsilon ider$ a distributed system consisting of a set $V$ of processors , $\mathit{0}71daSS$ urne $t\tau_{1_{\beta}a}t$ evpry pair of processors can directly comm unicate with each otlt er. A simple scheme $i_{\mathrm{t}}\mathrm{s}$ proposed, for keeping a dynam. $i.c$ set $U\subseteq V$ of processors in a $(lp\dot{S}tr\dot{?}\iota_{ute}d$ ma$7l .7l$ er. $T\prime_{\math...
متن کاملLimiting partial combinatory algebras
We $\mathrm{w}\mathrm{i}\mathrm{u}$ construct from every partial
متن کاملSpectra of some new extended corona
For two graphs $mathrm{G}$ and $mathrm{H}$ with $n$ and $m$ vertices, the corona $mathrm{G}circmathrm{H}$ of $mathrm{G}$ and $mathrm{H}$ is the graph obtained by taking one copy of $mathrm{G}$ and $n$ copies of $mathrm{H}$ and then joining the $i^{th}$ vertex of $mathrm{G}$ to every vertex in the $i^{th}$ copy of $mathrm{H}$. The neighborhood corona $mathrm{G}starmathrm{H}$ of $mathrm{G}$ and $...
متن کاملComplexity of Combinations of Qualitative Constraint Satisfaction Problems
The CSP of a first-order theory $T$ is the problem of deciding for a given finite set $S$ of atomic formulas whether $T \cup S$ is satisfiable. Let $T_1$ and $T_2$ be two theories with countably infinite models and disjoint signatures. Nelson and Oppen presented conditions that imply decidability (or polynomial-time decidability) of $\mathrm{CSP}(T_1 \cup T_2)$ under the assumption that $\mathr...
متن کامل